8(10^2x-7)=3

Simple and best practice solution for 8(10^2x-7)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(10^2x-7)=3 equation:



8(10^2x-7)=3
We move all terms to the left:
8(10^2x-7)-(3)=0
We multiply parentheses
80x^2-56-3=0
We add all the numbers together, and all the variables
80x^2-59=0
a = 80; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·80·(-59)
Δ = 18880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18880}=\sqrt{64*295}=\sqrt{64}*\sqrt{295}=8\sqrt{295}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{295}}{2*80}=\frac{0-8\sqrt{295}}{160} =-\frac{8\sqrt{295}}{160} =-\frac{\sqrt{295}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{295}}{2*80}=\frac{0+8\sqrt{295}}{160} =\frac{8\sqrt{295}}{160} =\frac{\sqrt{295}}{20} $

See similar equations:

| 2x+20=40-x | | 1911=39x+20 | | -8n+14=8n-3(n+4) | | (8x+1)=(10x-19) | | 9/m=6/11 | | 2x+1.3=-(-2)+1/6x | | 13x+3=8x+15=7x | | m−7=–4 | | 3.8z=-19 | | 3(6.7x)+2(1-5x)=42 | | 10=1/2b(5) | | (9.9+x)/0.25;x=3.6 | | 2(d+–2)=–6 | | 75x=25x+50 | | -4(n-7)=5n+10 | | 0.5x0.8=-1.3x-1.6 | | 15-n=-3(7n-5) | | 8(-b+5)=35-3b | | 6+5n=6(8n+1) | | -3-(x+7)=-4x+5 | | 50+30x=35x | | 2x-4=3-x^+1 | | 12-n=5(n+6) | | 2/3x-10=-22 | | 2x-4=3^-x+1 | | 3x–6=15,x= | | -4+6(3x+5)=-24+8x | | 6x-1+5x+19=180 | | 2(y+5)=3y | | -14=2cc= | | 32-7w=-17 | | 2x-5=17+5+52/2=22/2x=11 |

Equations solver categories